

Adaptive Optics • Optical Microsystems • Wavefront Sensors

Adaptive optical system based on 20-channel linear PDM: technical passport

OKO Technologies,

OKO Technologies is the trade name of Flexible Optical ${\sf BV}$

1 Installation of FrontSurfer software

- 1. Start "setup.exe" from "fsurfer" directory of the installation CD to install FrontSurfer to your computer. Follow further installation instructions.
- 2. Start "Install.exe" from "keylok" directory of the installation CD to install drivers for the protection dongle. Select the option "USB dongle". Please note that the installation should be completed BEFORE the dongle is connected.
- 3. To be able to operate deformable mirrors, you need to install "DLPortIO" library. Go to the directory "DLPortIO" and run the setup program "port95nt.exe". Please reboot after the installation.
- 4. Attach the FrontSurfer dongle to a free USB port. The system will recognize the device. Choose for automatic installation of the driver.
- 5. Now you may start "FrontSurfer" from the Start menu.

2 Interfacing of the wavefront sensor

- 1. Go to the directory "basler". Start the setup program and install drivers and applications for Basler A601f/A602f camera. Attach the camera to a Firewire port of your computer only when the program will request it. Please note that 12 V DC voltage should be supplied to the camera via the Firewire port. When using a notebook, you should connect an external adaptor to "+12 V" connector on the Firewire interface card.
- 2. Start "BCAM Viewer" and make sure that you can see the image from the camera.
- 3. Configure video interface in FrontSurfer. For this purpose go to the menu "Options ⇒ Camera". In the dialog box "Camera interface" check "Plugin" option. After that, load plugin for the Basler camera by pressing "Load" button and selecting "BCAM1_8.dll" file in the FrontSurfer installation directory. Press "OK".
- 4. Set camera viewer type through the menu command "Preview ⇒ Configuration". Select the option "internal viewer" and press "OK". Now you may check whether FrontSurfer can capture images from the wavefront sensor.
- 5. Load the wavefront sensor calibration data. For this purpose go to the menu "Options ⇒ Parameters". In the dialog box "Sensor parameters" press "Load" button and load the calibration file "calibration.txt" from the "fsurfer" directory of the CD. Press "OK".

For Basler A602f you may achieve faster closed-loop operation by enabling a partial scanning mode. For this purpose go to the menu "Options ⇒ Camera". In the dialog box "Camera interface" press "Properties" button. Unselect the option "maximize" and adjust the fields "Left", "Width", "Top" and "Height" to reduce the area of interest. You need to reduce dark space at the periphery of the frame, keeping the whole hexagonal pattern of spots visible.

The sensor has a microlens array having orthogonal arrangement of microlenses, and is aperture is mostly limited by the image sensor size. You can use it only in the reference mode with manually defined aperture. To define the aperture (area of interest), load the reference pattern first, then click on the reference picture and draw the aperture by dragging the cursor. It will be displayed as a red rectangle. For more information, refer to section 3.6.3 of the FrontSurfer manual.

3 Interfacing of the deformable mirror

- 1. Shut down your computer, install the digital board for control of the deformable mirror. Turn on the computer, and Windows will recognize the board. Install drivers from "drivers/PCI_boards" directory of FrontSurfer CD.
- 2. Load configuration of channels for the deformable mirror. With this purpose go to the menu command "Mirror ⇒ Configuration". In the dialog box "Mirror interface" check the option "OKO PCI cards" and press "Configure". In the dialog box "Deformable mirror configuration" press the "Load" button and load the file "piezo20lin_pci.txt" from the CD "fsurfer" directory.
- 3. Get the base address for the deformable mirror control board. PCI boards are plug-and-play compliant; their adrresses are assigned dynamically. You need to install drivers of these boards from the directory "PCI_drivers/WinXX", where XX is a Windows version. To get the addresses, go to "Control Panel ⇒ System ⇒ Hardware ⇒ Device manager". The boards are listed in the section "Multifunction adapters". Double-click on the device named "PROTO-3/PCI" and check the section "Resources" for its base I/O address.
- 4. Correct the address in the dialog box "Deformable mirror configuration" and press "OK".
- 5. Connect the amplifier unit to the digital board using the 26 pins-to-26 pins cable enclosed.
- 6. Connect the mirror to the amplifier unit using the 20 pins-to-20 pins cable enclosed. Fix the cables to the optical table.

4 Assembling and running of the adaptive optical system

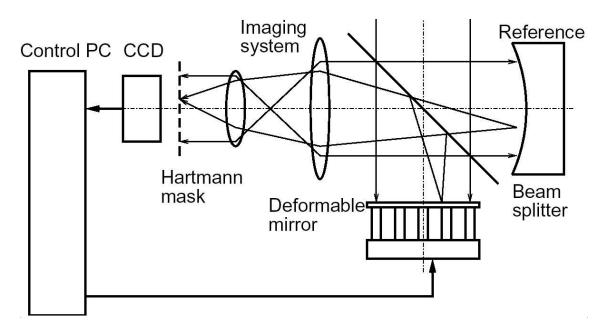


Figure 1: Scheme of typical adaptive optics setup.

- 1. Place the mirror and the wavefront sensor into an optical setup. The optical scheme should satisfy the following conditions.
 - a) The optics should re-image the plane of the mirror to the plane of the Hartmann mask (or microlens array).
 - b) The scheme should scale the beam in such a way that the working aperture of the mirror (about 50 mm) should be re-imaged to the working area of the Hartmann mask/microlens array (5 mm).
 - c) The optics should allow for calibration. In the general case, it consists of separate measurement of the complete setup aberration with ideal object or a source of ideal wavefront, replacing the one to be tested.

The typical setup for functional feedback loop is shown in the Figure 1.

- 2. Connect the wavefront sensor and the deformable mirror; turn on the power supplies.
- 3. Start FrontSurfer. Turn on the preview mode in FrontSurfer and check an image from the Hartmann sensor for both the calibration beam and those reflected from the mirror. It is highly desirable to provide that no spots are missing.

4. Go to the menu command "Mirror → Set values". Now you may start to use the mirror by applying different control voltages to the actuators. See FrontSurfer manual for instructions on using of the feedback loop operation mode.

5 Mirror testing

The mirror was calibrated and tested in feedback loop operation mode before shipping. The results of testing are presented below.

FrontSurfer perform wavefront correction in a series of iterations. If the residual aberration ϕ_n at the *n*-th iteration corresponds to the set of actuator signals \mathbf{X}_n then the actuator signals at the next step \mathbf{X}_{n+1} will be determined by expression

$$\mathbf{X}_{n+1} = \mathbf{X}_n - g\mathbf{A}^{-1}\phi_n,$$

where g is the feedback coefficient with value in the range (0..1], \mathbf{A} is the influence matrix of the mirror, \mathbf{A}^{-1} is its pseudo-inverse given by

$$A^{-1}=VS^{-1}U^T$$
.

 \mathbf{U}, \mathbf{S} and \mathbf{V} are the singular value decomposition (SVD) of \mathbf{A} which is $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ [1]. The columns of the matrix \mathbf{U} make up orthonormal set of the mirror deformations (modes), and the values of the diagonal matrix \mathbf{S} represent the gains of these modes. Discarding those modes having small singular values may improve controllability of the system.

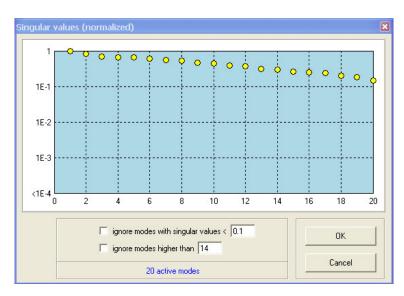


Figure 2: Singular values of the 20-channel linear PDM.

Experimental singular values for the deformable mirror are given in Figure 2; first 20 SVD modes are shown in Figure 3.

A flat mirror was used as a reference. Optimization started from the initial shape

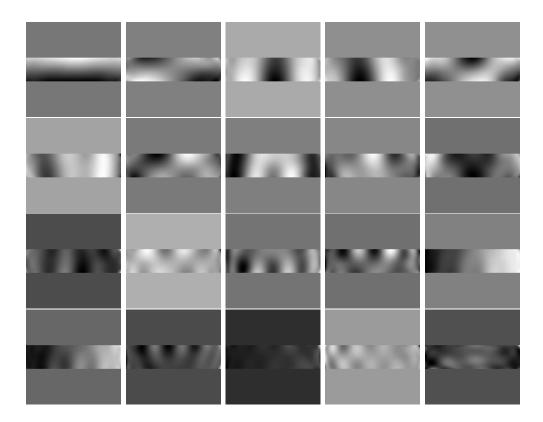


Figure 3: SVD modes of the 20-channel linear PDM.

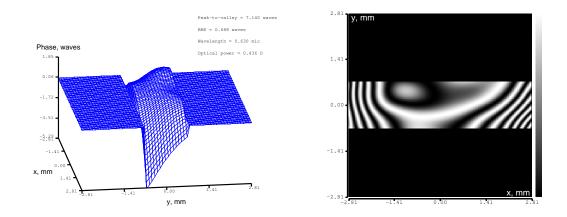


Figure 4: Initial shape of the mirror.

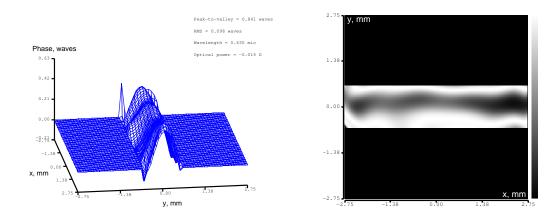
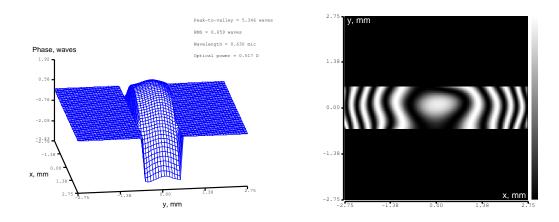
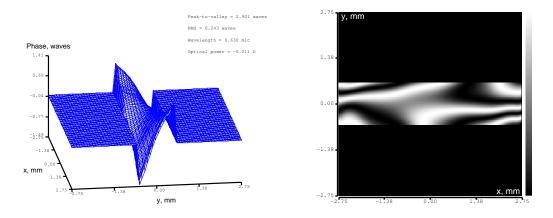




Figure 5: The mirror shape after active flattening.

Figure 6: Generated defocus (Zernike term Z[2,0]=-1.5 μ m).

Figure 7: Generated astigmatism (with respect to the reference curvature), Zernike term Z[2,-2], amplitude $2 \mu m$.

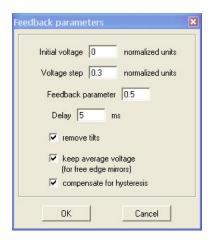


Figure 8: Settings in the "Feedback parameters" dialog box used throughout the tests.

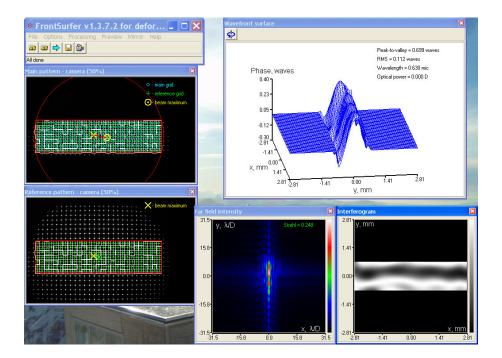


Figure 9: FrontSurfer screen.

of the mirror, which was produced by setting all mirror values to zero; this shape is shown in Figure 4.

In the first test we attempted to flatten the mirror by optimizing it with respect to the reference; the result is shown in Figure 5. In the following tests we generated Zernike aberrations - defocus and astigmatism; the results are shown in Figures 6-7. Figure 8 shows the settings of the "Feedback parameters" dialog box used throughout the tests. Figure 9 shows the FrontSurfer screen with an example reconstruction result.

References

[1] C. Paterson, I. Munro, C. Dainty, A low cost adaptive optics system using a membrane mirror, Optics Express 6, 175-185 (2000).

6 Contact

All questions about the technology, quality and applications of adaptive mirror should be addressed to:

Flexible Optical B.V.

Röntgenweg 1, 2624 BD, Delft

The Netherlands

Date:

Signature: